Fluid and Electrolyte Imbalances Acid Base Imbalances

your life...

Unit XI Lemone and Burke Chapter 10

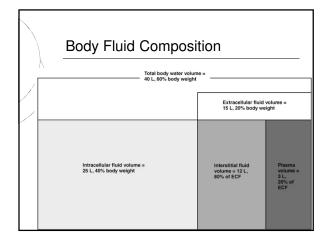
Objectives

- Discuss factors affecting fluid and electrolyte balance
- Discuss specific lab data and their implications as they relate to fluid and electrolyte balances.
- Explain pathophysiology, manifestations, nursing diagnoses and interventions of imbalances of the following electrolytes:
 - a. Sodiumb. Potassium
- Develop and implement a plan of care for a client with fluid and electrolyte imbalance

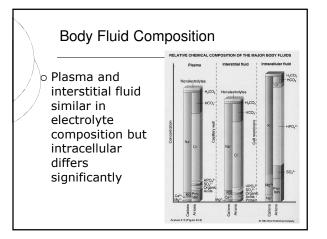
Homeostasis

- Body's attempt to maintain state of physiologic balance in presence of constantly changing conditions
- Necessary for body to function optimally at a cellular level and as a total organism

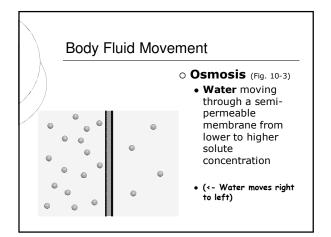
Body Fluid Composition

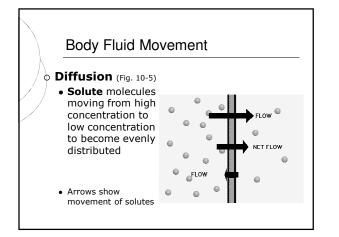

 \circ Water – primary component

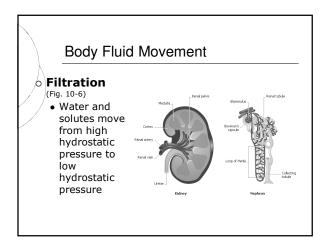
- Medium for transport
- Medium for metabolic reaction within cell
- Helps regulates body temperature
- Provides insulation
- Provides form, structure, and shock absorption
- Acts as a lubricant
- Contribute to enzyme reactions
- Essential for neuromuscular activity

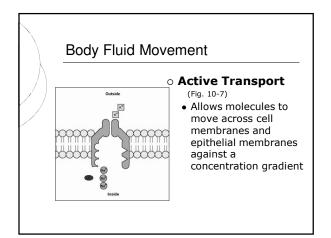

Body Fluid Composition

o Electrolytes


- Charged particles called ions
- Anions and cations
- Assist in regulating water balance
- Help regulate and maintain acidbase balance
- Contribute to enzyme reaction
- Essential for neuromuscular activity







Body Fluid Regulation

- $\circ \, \text{Thirst}$
- \circ Kidneys
- Renin-Angiotensin-Aldosterone System
- o Antidiuretic Hormone (ADH)
- o Atrial Natriuretic Peptide (ANP)

Fluid Volume Deficit (FVD)

o Causes

- Excessive fluid loss
- Insufficient fluid intake
- Failure of regulatory system
- Third spacing

Manifestations - FVD

- Dry mucous membranes
- Decreased urinary output
- Fatigue
- Altered mental status, anxiety, restlessness
- Dry skin, pale, cool extremities
- Tachycardia,
- Decreased blood pressure
- Increased body temperature
- Thirst
- Weight loss
- Skin turgor poor

Diagnosing - FVD

- o Serum electrolytes
- \circ Serum osmolality
- \circ Hemoglobin and hematocrit
- \circ Urine specific gravity

Management - FVD

Rehydration

- Water for mild fluid deficit
- Sports drink for moderate FVD

• IV fluid for severe fluid deficit involving electrolytuimbalance

Health Promotion and Assessment

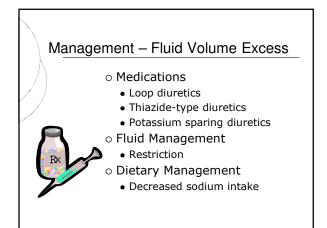
- \circ Instruct on adequate fluid intake
- Sports drinks for outside activities or exercise – esp in hot weather
- Fluid intake should include 2500ml/day
- \circ Collect health history
- \circ Physical assessment
 - Older adults

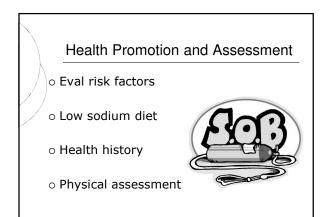
Nursing diagnosis - FVD

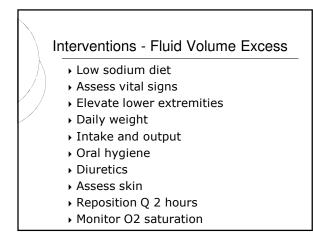
- o Deficient Fluid Volume
- \circ Ineffective Tissue Perfusion
- \circ Risk for Injury

Intervention

- \circ Assess intake and output
- Vital signs
- \circ Administer oral and/or IV fluids
- \circ Monitor lab values
- \circ Monitor LOC
- \circ Institute safety precautions
- \circ Provide adequate skin care
- \circ Instruct patient


Fluid Volume Excess


 Both water and sodium are retained in the body
 Fluid overload



Manifestations and Complications

- Weight Gain (>5% in a short period)
- Full bounding pulse
- Distended neck and peripheral veins
- \circ Dyspnea with cough
 - Moist crackles, pulmonary edema
- Polyuria
- Ascites
- o Peripheral edema, if severe anasarca

Nursing Diagnosis –

 \circ Fluid Volume Excess

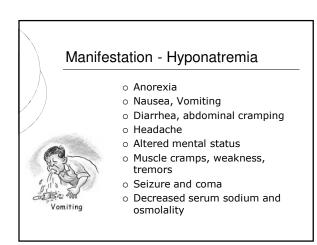
- \circ Impaired gas exchange
- \circ Risk for impaired skin integrity

Electrolytes

Na - 135 - 145 mEq/L
K - 3.5 - 5.0 mEq/L
Ca - 8.5 - 10.0 mEq/dL
Phos - 2.5 - 4.5 mg/dL
Magnesium - 1.6- 2.6 mEq/dL

Sodium Imbalance

- o Most plentiful electrolyte in ECF
- Normal range 135-145 mEq/L
- \circ Primary regulator of volume, osmolality and distribution of ECF.
- \circ Most of the body's sodium comes from diet
- The kidney excretes/conserves sodium in response to changes in vascular volume


Hyponatremia

- Serum sodium <135 mEq/L (Critical <120 mEq/L)
- Serum osmolality <280 mOsm/kg

\circ Causes

- Excess sodium loss (kidneys, GI tract, skin)
- Water gains r/t renal disease, heart failure, liver failure
- SIADH
- Excessive hypotonic IV fluids (NS 0.45%)

Management - Hyponatremia • Fluid and dietary management • Isotonic saline (NaCl 0.9%) or Lactated Ringer sol. • 3% saline may be given cautiously for severe sodium loss. • Loop diuretics (Lasix) • Increase foods high in sodium (box 10-4)

Interventions - Hyponatremia

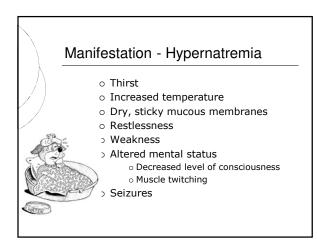
 \circ I+O

- \circ Isotonic solutions
- \circ Fluid restriction
- \circ Daily weight
- \circ Monitor labs
- \circ Assess for neuro changes
- \circ Assess muscle strength and tone

Nursing Diagnosis - Hyponatremia

 \circ Risk for Fluid Volume Deficit

 \circ Risk for Ineffective Cerebral Tissue Perfusion


Hypernatremia

Labs:

- ϕ Serum sodium level > 145 mEq/L
- Osmolality > 295 mOsm/kg
- Sodium gain
- $\circ~\mbox{Water}~\mbox{loss}$
- $\circ~$ Excess sodium in ECF stimulates release of ADH $\,$ -more water retained
- The thirst mechanism stimulated to increase intake of water
- Hypernatremia almost never occurs in people with intact thirst mechanism

Causes - Hypernatremia

- \circ Altered thirst mechanism
- \circ Profuse sweating
- \circ Diarrhea
- \circ Diabetes Insipidus
- \circ Oral electrolyte solutions
- \circ Excess IV fluids such as NS, 3% or 5% NaCl
- \circ Inability to respond to thirst sensation or obtain water

Management - Hypernatremia

- Oral or Intravenous fluid intake
- Hypotonic solution 0.45%
 NaCl

- 5% dextrose in water (provides pure water when the glucose is metabolized)
- Diuretics to increase sodium excretion

Nursing Diagnosis - Hypernatremia

o Risk for injury

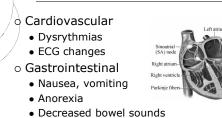
• mental status and brain function is

• affected by elevated Na, - brain swells

Intervention:

Assess neuro function

- LOC, N+V
- Monitor labs Na and osmolality


Potassium Imbalance

- Normal Value 3.5 5.0 mEq/L
- Hypokalemia
 <3.5 mEq/L
 Critical value: <2.
- <3.5 mEq/L Critical value: <2.5 mEq/LHyperkalemia
- > 5.0mEq/L Critical value: >6.5 mEq/L
 Kidneys are principle organ for
- eliminating potassium
- Most potassium intake is acquired through diet

.Hypokalemia

- \circ Potassium < 3.5 mEq/L
- \circ Causes
 - Excess GI losses: vomiting, diarrhea, ileostomy drainage
 - Renal losses: diuretics, hyperaldosteronism
 - Inadequate intake
 - Alkalosis,
 - Insulin Therapy

Manifestation - Hypokalemia

- o Neuromuscular
 - Muscle weakness
 - Leg cramps

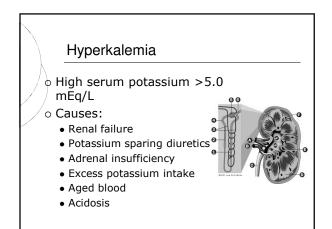
Management - Hypokalemia

- Potassium supplements (see box pg 221)
 - Potassium chloride- treatment of choice
 - KCL 40 mEq daily
 - Orally dilute with juice and food
 - Intravenously, administer slowly and diluted in IV solution to prevent burning
- o Dietary Intake
 - High in potassium rich foods

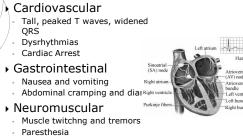
Health Promotion and Assessment

- \circ Discuss use of sports drinks to replace fluid loss - esp athletes
- Diet teaching
- Medication teaching
- o Health history
- o Physical assessment

Interventions - Hypokalemia


Monitor K+

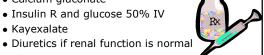
 \circ VS


- $\circ \text{ Assess Pulses}$
- \circ Cardiac monitoring
- \circ Assess muscle tone
- \circ Monitor respirations
- 0 I+0
- \circ Bowel sounds

Nursing Diagnosis - Hypokalemia

- o Decreased Cardiac Output
- \circ Activity Intolerance
- \circ Risk for Imbalanced Fluid Volume
- \circ Risk for injury
- \circ Risk for ineffective health maintenance

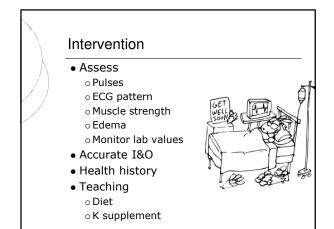
Manifestations - Hyperkalemia


Flaccid paralysis

Management - Hyperkalemia

Medications

Kayexalate

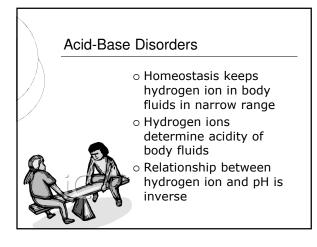

- Calcium gluconate
- Insulin R and glucose 50% IV

e EKG

o Dialysis

- If renal function is severely limited
- o Dietary
 - Decrease potassium rich foods

Nursing Diagnosis - Hyperkalemia


- \circ Risk for Decreased Cardiac Output
- \circ Risk for Activity Intolerance
 - Same as Hypokalemia
- \circ Risk for Imbalanced Fluid Volume
- \circ Ineffective health maintenance

Case Study

- \circ 63 y/o female with hx of DM and ESRD
- \circ Comes to ER c/o SOB and extreme weakness

Case Study

 43 y/o male w Hx DM comes to ER w c/o flu for 3 days, not feeling good

Buffer Systems

- Substances to prevent major changes in pH:
 - Bicarbonate/carbonic acid buffer
 - Phosphate buffer
 - Protein buffer

Respiratory System

- Regulates carbonic acid by retaining or eliminating CO2
- \circ Works within minutes
- Alkalosis depresses respiratory center

Renal System

- \diamond Long term regulation of acid base balance
- \circ Slow acting (hours to days)
- Alkalosis kidneys retain hydrogen ions and excrete bicarb
- Acidosis kidneys retain bicarb and excrete hydrogen ions

00

ABG - normal values

pH - 7.35-7.45
PaCO2 - 35-45 mm Hg
PO2 - 80-100 mm Hg
HCO3 - 22-26 mEq/L
BE -3.0 to +3.0

 \circ Table 10-10, pg 240

Respiratory Acidosis

- o pH < 7.35
- PaCo2 is high
- Renal system attempts compensation - slow

Respiratory Alkalosis

o pH > 7.45

 \circ PaCo2 is low

 Renal system attempts compensation - slow

Metabolic Acidosis

o pH < 7.35

 \circ HCO3 low

 \circ Resp system attempts compensation

Metabolic Alkalosis

o pH > 7.45

o High HCO3

 \circ Resp system attempts compensation

Nursing diagnosis

- \circ Risk for impaired gas exchange
- \circ Risk for decreased CO
- \circ Risk for excess/deficient fluid volume
- \circ Risk for injury
- \circ Ineffective airway clearance
- \circ Ineffective breathing patterns

Sample ABG

○ pH - 7.30
○ PCO2 - 51 mm Hg
○ PO2 - 84 mm Hg
○ HCO3 - 25 mEq/L
○ BE - -2

Sample ABG

○ pH - 7.51
○ PCO2 - 38
○ PO2 - 88
○ HCO3 - 32 mEq/L
○ BE - +3

Sample ABG

○ pH - 7.50
○ PCO2 - 18 mm Hg
○ PO2 - 84 mm Hg
○ HCO3 - 25 mEq/L
○ BE - -2

Sample ABG

pH - 7.30
PCO2 - 36 mm Hg
PO2 - 84 mm Hg
HCO3 - 15 mEq/L
BE - -2

